使用Question Answering建立QA Bot (2024)
自從大語言模型(LLM)橫空出世之後,對談機器人又迎來了一片春天。但坦白說,使用LLM進行QA Bot的設計,在答案需要比較嚴謹正確的情境下,已生成的方式來產生,其實有頗高的風險。即便你使用RAG,要能夠100%的保證AI生成的答案絕對正確,都是一個挑戰。 但,如果採用 Azure 上的Question Answering,則沒有這個問題。因為Question Answering中每一個問題的答案,都是我們事先準備好的。 底下這篇,我們來看一下如何使用Azure Custom Question Answering 來快速建立一個QA Bot。 建立 Azure Language Services 首先,你可以先在 Azure Portal 建立 Language 服務,過去中文版叫做文字分析,2024正名之後,終於改為『語言服務』: 這邊直接點選左下角按鈕: 使用預設值建立即可,我建議定價層選S: 建立好之後,在服務的『概觀』底下,可以找到『Language Studio』: 點選進入該portal,首次進入,會需要選擇 resource type 與 你剛才建立好的 Language Resource: 完成後,就會進入到Language Studio的主畫面: 選擇 Custom Question Answering 進入後,請選擇 Custom Question Answering : 點選後,可以在 Custom Question Answering 的主畫面建立新專案: 關於Azure Search 第一次建立專案時,系統可能會跳出畫面要求你連結到一個 Azure Search 服務: 如果你之前沒有建立,可以先建立一個 Azure Search : 由於它是 Question Answering 搜尋功能的主要能力來源,建議你建立一個 Standard SKU 層級以上的Azure Search服務: 同時資料中心必須與 Language 服務相同。 建立完成之後,重新建立專案, 匯入疾管署資料 App 建立完成之後,我們就可以匯入知識庫,作為QA的來源依據,讀者可以嘗試匯入疾管署的疫苗接種注意事項資料,位於: https://www.cdc.gov.tw/Category/QAPa